${\tt SAEED \; SALEHI, \; \textit{Frontiers Summer School in Mathematics}, \; 25 \; August \; 2021.}$

A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Aristotle's Syllogism, 25 August 2021

Shortage of Propositional Logic

This deduction cannot be formalized in Propositional Logic:

All humans are mortal. Socrates is a human.

.: Socrates is mortal.

We need some

- predicates for expressing **properties** of subjects, and some
- quantifiers to **quantify** (the number of) **the subjects** satisfying some properties (in terms of ALL or NONE).

Syllogism

```
S=subject \mathcal{P}=property
```

Aristotle's Syllogistic Connectives: a e í

- \triangleright $\mathcal{S}a\mathcal{P}$: Every \mathcal{S} is \mathcal{P} .
- \triangleright SiP: Some S is P.
- \triangleright Se \mathcal{P} : No S is \mathcal{P} . Every S is not \mathcal{P}

Later was added: o

 \triangleright So \mathcal{P} : Some S is *not* \mathcal{P} .

Syllogistic Rules

M=middle property

First Figure
$$\frac{\mathcal{M} \square \mathcal{P}, \quad \mathcal{S} \bigcirc \mathcal{M}}{\mathcal{S} \triangle \mathcal{P}}$$

example:
$$\frac{\mathcal{MaP}, \mathcal{SaM}}{\mathcal{SaP}}$$

Second Figure
$$\frac{\mathcal{P} \square \mathcal{M}, \quad \mathcal{S} \bigcirc \mathcal{M}}{\mathcal{S} \triangle \mathcal{P}}$$

example :
$$\frac{\mathcal{P}e\mathcal{M}, \ \mathcal{S}i\mathcal{M}}{\mathcal{S}i\mathcal{P}}$$

Third Figure
$$\frac{\mathcal{M} \square \mathcal{P}, \quad \mathcal{M} \bigcirc \mathcal{S}}{\mathcal{S} \triangle \mathcal{P}}$$

example :
$$\frac{\mathcal{M}e\mathcal{P}, \ \mathcal{M}a\mathcal{S}}{\mathcal{S}o\mathcal{P}}$$

Fourth Figure
$$\frac{\mathcal{P} \square \mathcal{M}, \quad \mathcal{M} \bigcirc \mathcal{S}}{\mathcal{S} \triangle \mathcal{P}}$$

$$example: \frac{\mathcal{P}\alpha\mathcal{M},\ \mathcal{M}i\mathcal{S}}{\mathcal{S}\circ\mathcal{P}}$$

Aristotle's Syllogistic *Valid* Rules – First Figure

Aristotle's Syllogistic *Valid* Rules – Second Figure

$$\frac{PeM, SaM}{SeP} \qquad \frac{\text{no P is M, all S is M}}{\text{no S is P}}$$

$$\frac{PaM, SeM}{SeP} \qquad \frac{\text{all P is M, no S is M}}{\text{no S is P}}$$

$$\frac{PeM, SiM}{SoP} \qquad \frac{\text{no P is M, some S is M}}{\text{some S is not P}}$$

$$\frac{PaM, SoM}{SoP} \qquad \frac{\text{all P is M, some S is not M}}{\text{some S is not P}}$$

Aristotle's Syllogistic *Valid* Rules – Third Figure

$$SiP$$
some S is P MiP , MaS some M is P, all M is S SiP all M is P, some M is S MaP , MiS all M is P, some M is S SiP some S is P MeP , MaS no M is P, all M is S SoP some M is not P, all M is S SoP some M is not P, all M is S SoP some S is not P MeP , MiS no M is P, some M is S SoP some S is not P

all M is P, all M is S

Aristotle's Syllogistic Valid Rules – Fourth Figure

$$SiP$$
some S is P PiM , MaS some P is M, all M is S SiP some S is P PaM , MeS all P is M, no M is S SeP no S is P PeM , MaS no P is M, all M is S SoP no P is M, some M is S PeM , MiS no P is M, some M is S SoP no P is M, some M is S

all P is M, all M is S

Syllogism, Set Theoretically

http://www.thefirstscience.org/syllogistic/

Aristotle's Syllogistic Connectives: a e í

 \triangleright $\mathcal{S}a\mathcal{P}$: Every \mathcal{S} is \mathcal{P} .

 $S \subseteq P$

 \triangleright SiP: Some S is P.

 $S \cap P \neq \emptyset$

 \triangleright Se \mathcal{P} : No \mathcal{S} is \mathcal{P} .

 $S \cap P = \emptyset$

Later was added: o

 \triangleright $\mathcal{S} \circ \mathcal{P}$: Some \mathcal{S} is not \mathcal{P} .

 $\mathcal{S} \nsubseteq \mathcal{P}$

http://www.butte.edu/resources/interim/wmwu//iLogic/2.5/iLogic_2_5.html

Aristotle's Syllogistic (In)valid Rules

Some rules are not valid - require non-emptiness conditions.

$$\frac{\mathcal{P}a\mathcal{M}, \quad \mathcal{M}a\mathcal{S}}{\mathcal{S}i\mathcal{P}} \mathcal{P} = \emptyset \qquad \qquad \frac{\mathcal{P} \subseteq \mathcal{M}, \quad \mathcal{M} \subseteq \mathcal{S}}{\mathcal{S} \cap \mathcal{P} \neq \emptyset} X$$

$$\frac{\mathcal{M}a\mathcal{P}, \quad \mathcal{M}a\mathcal{S}}{\mathcal{S}i\mathcal{P}} \mathcal{M} = \emptyset \qquad \qquad \frac{\mathcal{M} \subseteq \mathcal{P}, \quad \mathcal{M} \subseteq \mathcal{S}}{\mathcal{S} \cap \mathcal{P} \neq \emptyset} X$$

$$\frac{\mathcal{P}e\mathcal{M}, \quad \mathcal{M}a\mathcal{S}}{\mathcal{S}o\mathcal{P}} \mathcal{M} = \emptyset \qquad \qquad \frac{\mathcal{P} \cap \mathcal{M} = \emptyset, \quad \mathcal{M} \subseteq \mathcal{S}}{\mathcal{S} \nsubseteq \mathcal{P}} X$$

$$\frac{\mathcal{M}e\mathcal{P}, \quad \mathcal{M}a\mathcal{S}}{\mathcal{S}o\mathcal{P}} \mathcal{M} = \emptyset \qquad \qquad \frac{\mathcal{M} \cap \mathcal{P} = \emptyset, \quad \mathcal{M} \subseteq \mathcal{S}}{\mathcal{S} \nsubseteq \mathcal{P}} X$$