$SAEED\ SALEHI,\ \textit{Frontiers Summer School in Mathematics},\ 30\ August\ 2021.$

A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Gödel's Incompleteness, 30 August 2021

The Halting Problem (1)

Some Recursive Functions may Never Halt (may not have outputs on some inputs); e.g.,

$$D(x,y) = [\mu z. \ z + x = y] = \begin{cases} y - x & \text{if } x \leq y \\ \text{undefined} & \text{if } x > y \end{cases}$$
 halts only when $x \leq y$.

Notation:
$$\begin{cases} f(x) \downarrow & f \text{ is defined at } X \\ f(x) \uparrow & f \text{ is } not \text{ defined at } X \end{cases}$$

Recursive Functions can be encoded by natural numbers: Any description (proof) of a recursive function is a well-built sequence of $\langle Z, S, \pi_i^k, A, M, E, \chi_{\leqslant}, \wp, o, \mu \rangle$ (o stands for composition) and thus can be coded in \mathbb{N} .

Denote the (Gödel) code of the recursive function f by $\lceil f \rceil$.

The Halting Problem (2)

Theorem (Turing 1937)

There is no recursive function \mathfrak{h} such that for any Recursive f, $\mathfrak{h}(\lceil f \rceil) = 1 \iff f(\lceil f \rceil) \downarrow \quad \text{and} \quad \mathfrak{h}(\lceil f \rceil) = 0 \iff f(\lceil f \rceil) \uparrow.$

Proof.

Otherwise, $\mathfrak{g}(x) = \mu z$. $(z + \mathfrak{h}(x) = z)$ would be recursive too, for which we have $\mathfrak{g}(\lceil f \rceil) \downarrow \iff f(\lceil f \rceil) \uparrow$ for every recursive f. Putting $f = \mathfrak{g}$ we get the contradiction $\mathfrak{g}(\lceil \mathfrak{g} \rceil) \downarrow \iff \mathfrak{g}(\lceil \mathfrak{g} \rceil) \uparrow$!

Corollary

There is no algorithmic way for recognizing whether a given program is a virus (self-generating) or not.

An Undecidable, and a Non-Enumerable Set

Corollary (The Halting Set is *Not* Decidable)

The set of all (single-input) programs which halt on their own code is not decidable.

$$\underbrace{\begin{array}{c}
\text{input: program } \mathcal{P} \\
\text{Mgorith}
\end{array}}_{\text{NO}} \xrightarrow{\text{output:}} \begin{cases}
\text{YES} & \text{if } \mathcal{P}(\lceil \mathcal{P} \rceil) \downarrow \\
\text{NO} & \text{if } \mathcal{P}(\lceil \mathcal{P} \rceil) \uparrow
\end{cases}$$

Theorem (The Halting Set *Is* Enumerable)

An input-free algorithm enumerates the set $\{P \mid P(\lceil P \rceil) \downarrow\}$.

Proof.

Enumerate all the (single-input) programs $\mathcal{P}_0,\mathcal{P}_1,\cdots$.

Let n := 1; for i = 0 to i = n run the n stages of $\mathcal{P}_i(\lceil \mathcal{P}_i \rceil)$; if it halts then PRINT "i"; let n := n+1 and repeat.

Corollary (The Non-Halting Set is *Not* Enumerable)

The set $\{P \mid P(\lceil P \rceil) \uparrow\}$ is not enumerable.

Decidable Structures

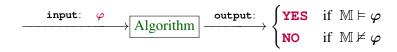
Definition (Decision Problem for a Structure)

Fix a structure $\langle \mathbb{M}; \mathcal{L} \rangle$.

Input: a first-order
$$\mathcal{L}$$
-sentence φ . Output:
$$\begin{cases} \mathbf{YES} & \text{if } \mathbb{M} \vDash \varphi \\ \mathbf{NO} & \text{if } \mathbb{M} \nvDash \varphi \end{cases}$$

Definition (Decidable Structure)

A structure is decidable if its decision problem is algorithmically solvable.

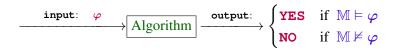


Enumerability in Structures

Theorem (Enumerable Structures are Decidable) If M is an enumerable structure, then it is decidable.

Proof.

If $\{\varphi \mid \mathbb{M} \vDash \varphi\}$ is enumerable, then so is its complement $\{\psi \mid \mathbb{M} \nvDash \psi\}$ because $\{\psi \mid \mathbb{M} \nvDash \psi\} = \{\psi \mid \mathbb{M} \vDash \neg \psi\}$.



Tarski's Theorems

Theorem (Decidability of the Real (Ordered) Field)

The structure $\langle \mathbb{R}; 0, 1, -, i', +, \times, \leq \rangle$ is decidable.

Theorem (Decidability of the Complex Field)

The structure $\langle \mathbb{C}; 0, 1, -, i', +, \times \rangle$ is decidable.

Arithmetics of Presburger and Skolem

Theorem (Presburger 1929)

The structure $\langle \mathbb{N}; 0, 1, +, \leq \rangle$ is decidable.

Theorem (Skolem 1930)

The structure $\langle \mathbb{N}; 0, 1, \times \rangle$ is decidable.

Full Arithmetic $\langle \mathbb{N}; +, \times \rangle$

Theorem (Gödel's Incompleteness 1931)

The structure $\langle \mathbb{N}; 0, 1, +, \times, \leqslant \rangle$ is not decidable.

Corollary

The structure $\langle \mathbb{Z}; 0, 1, -, +, \times, \leqslant \rangle$ is undecidable too.

Proof.

 \mathbb{N} is definable in it by the formula $0 \leq x$.

THE END

Corollary (J. Robinson 1949)

The structure $\langle \mathbb{Q}; 0, 1, -, \imath', +, \times, \leqslant \rangle$ is undecidable too.

Corollary

The structure $\langle \mathbb{C}; 0, 1, -, \imath', e^{\mathbf{X}}, +, \times \rangle$ is undecidable too.

Problem (Open — Tarski)

Is the Real Exponential Field $\langle \mathbb{R}; 0, 1, -, \imath', e^{x}, +, \times, \leq \rangle$ decidable or not?